Journal of Visual Languages and Computing (1995) 6, 233-253

Randomized Graph Drawing with Heavy-Duty
Preprocessing

Davip Harer* anD MEeR Sarpast

Dept. of Applied Mathematics and Computer Science
The Weizmann Institute of Science, Rebovot, Israel
* harel@wisdom, weizmann.ac.il, t meir@orbot-instr.co.il

Recerved June 1994 and accepted May 1995

We present a graph drawing system for general undirected graphs with straight-line
edges. It carries out a rather complex set of preprocessing steps, designed to produce a
topologically good, but not necessarily nice-looking layout, which is then subjected 1o
a downhill-only version of Davidson and Harel’s simulated annealing beautification
algorithm. The intermediate layout is planar for planar graphs and attempts to come
close to planar for non-planar graphs. The system’s results are better and faster than
what the annealing approach is able to achieve on its own.

© 1995 Academic Press Limited

1. Introduction

A LARGE amount of work on the problem of graph layout has been carried out in
recent years, resulting in a2 number of sophisticated and powerful algorithms, An
extensive and detatled survey can be found in [1]. Many of the approaches taken are
limited to special cases of graphs, such as trees or planar graphs; others concentrate on
special kinds of layouts, such as rectilinear grid drawings or convex drawings.

In this paper, we continue the work of Davidson and Harel [7], which addresses the
general problem of drawing arbitrary undirected graphs on the plane, with edges
drawn as straight-line segments. The goal is to try to achieve as ‘nice’ a drawing as
possible

The work in [7] uses simulated annealing to maximize a cost function that reflects
the aesthetic quality of the drawing, according to the following criteria: (i) distributing
vertices evenly; (ii) making edge lengths uniform; (ii1) minimizing edge crossings; and
(iv) keeping vertices from coming too close to edges. The system developed in [7]
performs well on small graphs, but becomes unsatisfactory when applied to graphs of
over 30 vertices or so, especially with respect to minimizing edge crossings. Planar
graphs that do not result in planar layouts are particularly annoying.

The basic idea in the present work 1s to use some rather intricate algorithms and
heuristics—part known and part new—to first obtain a rough approximation to a
drawing, with special emphasis on minimizing edge crossing, but with very little that
has to do with aesthetics, and then to submit the result to (a2 modified version of) the
annealing system of [7] for beautification according to the other criteria.

Qur system employs several phases. Phase A tests for planarity, and is carried out
by the algorithm of [3,20], using PQ-trees. The system then deals somewhat
differently with planar and non-planar graphs. The case of planar graphs is simpler,

* Current address: Orbot Instruments Ltd, Yavneh Industrial Zone, POB 601, Yavneh, lsrael.

1045-926X/95/030233 + 21 $12.00/0 © 1995 Academic Press Limited

234 . HAREL & M. SARDAS

and in it we carry out the following:

Phase A: Planarity testing.

Phase B: Planar embedding.

Phase C: Planar drawing.

Phase D: Randomized beautification.

Phase B uses the PQ-trees-based algonithm presented in [4] to construct a planar
embedding, ic. an ordered list of the neighbors of each vertex, which, if layed out
appropriately in cyclic order around the vertex, leads to a planar drawing.

Phase C then uses the embedding lists produced by the previous phase to actually
draw the graph. The output is a planar drawing with {crossing-free) straight-line
edges. To carry out this phase we had to design a special drawing algorithm, which is
a generalization of the algorithm 6f [6,9]. Phase D is the fine-tuning part of the
simulated annealing system of [7], slightly modified.

For non-planar graphs, the phases are as follows:

Phase A: Plananty testing.

Phase B™: Extracting planar subgraph.

Phase B: Planar embedding.

Phase B*: Reinserting removed edges.

Phase C: Planar drawing.

Phase D': Extended randomized beautification.

Phase B~ uses yet another application of the PQ-trees algorithm, described in
[15, 18], that attempts to find 2 maximal planar subgraph in the input graph, by
eliminating as few edges as possible. The subgraph produced by this phase is then
subjected to the planar embedding algorithm of phase B. Following this, phase B*
reintroduces the eliminated edges, while trying to minimize the number of crossings
that arise by doing so. At each crossing point a new vertex is inserted, yielding again a
planar graph®,

This planar graph is then drawn in phase C and is beautified by phase D' in a
manner similar to that of planar graphs. However, we have had to extend the
randomized algorithm of [7] with new components that try to overcome distortions
introduced by phase B*.

As far as planar graphs are concerned, our system achieves a noticable improvement
over the annealing system of [7]. In general, all planar graphs are drawn planar, In
fact, planar graphs with 50 vertices yield drawings that have a ‘close-to-perfect’ look.
The running time is also significantly improved, as the inherently slow annealing
process is not burdened with having to find a solution, but only with ‘massaging’ a
topologically suitable layout into a nice-looking one. Phase D, however, is still by far
the most time-consuming part of our system, as can be seen in Section 7. For graphs
that can be made planar by extracting a small number of edges, the results are still

2 This is the most technically involved part of our work, and we have devoted a separate paper 1o the
detailed description and analysis of this algorithm; see [12].

EWe should mention the GIOTTO system of Tamassia et 4l [25]. They were interested in drawing
diagrams using the grid standard, whereby vertices are placed at grid points and edges are rectilinear. While
their goals are quite different from ours, there is similarity in the early stages: they have steps similar to our
phases A through B, However, the algorithms they use for these steps are different from ours.

RANDOMIZED GRAPH DRAWING 235

good, and compared with the annealing system ours has the advantage of being stable.
In subsequent runs the results are much the same and are all fairly good, while in the
annealing system results can vary widely from run to run—some are acceptable, and
some are not.

For graphs that are far from planar (i.e. ones that require the elimination of more
than 10 edges or so for planarization), improvements are still required, and the
system’s results can still be worse than a manually produced drawing, even for
medium sized inputs.

Section 2 describes the simulated annealing system of [7], which was the starting
point for the current work. We next discuss our treatment of planar graphs. Section 3
contains a brief description of the drawing algorithm of phase C for planar graphs,
and Section 4 describes some heuristics used to enhance this drawing algorithm and
improve its output. Section 5 describes the changes and extensions introduced for the
case of non-planar graphs, including the algorithm used to reinsert edges in phase B*,
and the components added to the randomized algorithm in phase D' to minimize
damage caused by the reinsertion.

Section 6 discusses some examples of drawings obtained by the system, with the
goal of highlighting the improvements over [7]. Section 7 summarizes the asymprotic
time-complexity of the various parts of the system, and includes a table of
performance statistics for example graphs. Finally, Section 8 contains some directions
for future work.

2. Randomized Beautification

This part in our system is an adaptation of the work of Davidson and Harel [7], in
which they applied the simulated annealing paradigm to the problem of drawing
graphs ‘nicely’. We incorporate their system as our final phase, after a topologically
acceptable, but not necessarily a nice-looking layout has been found in the earlier
phases. In this section we briefly describe the system of [7], and our adaptation and
use of it.

Simulated annealing tries to find a configuration that minimizes a cost function [19]
carefully designed to capture the ‘niceness’ of a drawing. Minimization is attempted
by a process that starts from some initial random drawing, and repeatedly improves it
as follows. Given the current candidate drawing o, a new candidate ¢’ is generated
that is close to o, and the following annealing condition 1s tested:

Let £ and E’ be the values of the cost function at o and &' respectively;
if E' <E or random < £ V7| then accept o’ as the current candidate.

Here random stands for a real number between 0 and 1, selected randomly, and 7 is
the so-called temperature, which is cooled down as the process proceeds. This

fragment of the algorithm is called an annealing step. Generating the next candidate
drawing 1s carried out as follows:

Choose a vertex v; and an angle & at random;
Let P be the current position of v; Move v; to a position @, such that the line
segment PQ is of length 7 and forms angle 8 with the x-axis.

Here, r 1s the offset radius. It starts from some initial value, and decreases as the

236 D. HAREL & M. SARDAS

process proceeds. The entire process iterates a large number of annealing steps of the
kind described above. This number is proportional to the number of vertices in the
graph, and, as mentioned, r and T are decreased as the process proceeds.

The cost function developed in [7] takes into account several empirical criteria for
nice drawings. These are integrated using normalizing factors denoted below by A;,
that define the relative importance of each criterion in the overall value. Many of the
parameters of the algorithm are open for interactive change by the user. This includes
control of the normalizing factors, the number of annealing steps to perform and
more. Here is a brief description of the cost function.

The first component tries to spread out the vertices evenly. For each pair of vertices
v; and v, the term A,/d% is added to the cost function, where d;; is the Euclidean
distance between v; and v, in the candidate drawing.

The next component prevents vertices from being positioned too close to the
borderline of the drawing space. The following term, for each vertex v;, takes care of

this;

1 1 1 1
Az(;;;;-i- E+E+;§) (1)

Here, 7, [;, t; and b, are the distances between 7, and the four borderlines—right, left,
top and bottom.

The next component tries to make the edges short, by adding the term A,d? to the
cost function, for each edge e, where d, is €’s length.

The next component penalizes edge crossings. A fixed value of A4 is added to the
cost function for each crossing.

The last component tries to keep vertices from coming too close to edges. For each
vertex v, and edge ey, the term A;/g}; is added to the cost function, where g, denotes
the least distance from v, to any point on ;. Since the calculation of this component is
very time consuming, we have incorporated two variants of the cost function in our
system: the full one, in which this component appears, and the simple one, in which it
is omitted.

Reference [7] contains examples obtained by the simulated annealing system, and
also compares it with the spring-based methods of [8, 17], and the method of [10]. (A
related approach to aesthetic drawing of straight-line undirected graphs is [26]). While
slow in general, due to the inherent time-consuming nature of simulated annealing,
the results are very good for small graphs of size up to 20-25 vertices; larger graphs
are much harder to handle. Increasing the number of iterations of the system often
helps, but this causes a significant increase in the already quite high running time.

The asymptotic running time of the algorithm of [7] is O(n’e), where n =|V| and
e = |E| for input graph G =(V, E). This follows from the fact that updating the cost
function can be done with O(ne) per iteration, and the number of iterations is linear
in 7. The initial value of the cost function for the first drawing must be calculated
from scratch, which also requires O(n’e) operations.

In our adoption of the annealing system of [7] in phase D, we employ the same cost
function and the same method for generating new candidates for a drawing. However,
experimentation showed that in our context almost all of the moves accepted were
those with E’' <E, and only very few were the uphill moves, i.e. those accepted by

RANDOMIZED GRAPH DRAWING 237

the annealing condition random < e*'~5"7. Consequently, we decided to remove this

condition and test only for E' <E in accepting a candidate drawing. This saves
significant running time, with almost no influence on the results. We thus call this
part of our system the randomized phase, rather than the annealing phase. This
downbhill-only version of the algorithm appears already in the original system of [7],
as a fine tuning stage that is employed to further improve the drawing after the
annealing process ends. Thus, interestingly, we usc the fine-tuning process for the
same task as it 15 used in [7], but here it is preceded not by a lengthy simulated
annealing process but by quite different, more complex yet faster, methods for
reaching a rough initial layout of the input graph.

We use both variants of the cost function, and have found that alternating them
seems to have the best effect. We start with a number of simple iterations, i.e. ones
that do not test vertex-edge proximity, followed by some iterations that use the full
cost function, including this time-consuming test; this is followed by a number of
simple iterations, followed by some full ones, etc.

3. Planar Graphs: The Drawing Algorithm

In this section we discuss the drawing algorithm for planar graphs, that constitutes
phase C of our system. We comment on our choice of approach, and on the need for
a significant modification thereof. A detailed description of the resulting algorithm is
outside the scope of this paper, and can be found in [12,23].

The input to phase C is a planar graph accompanied by the planar embedding
constructed in phase B using the PQ-trees algorithm of [4]. The output is a planar
drawing of the graph that complies with the given embedding. By a planar embedding
of a graph G we mean an array of lists, one for each vertex, with ¢’s list containing
the edges incident to it in circular order around v in a possible planar drawing of G.

Our algorithm is a considerably generalized version of the drawing algorithm of
Chrobak and Payne [6], which, in turn, is based on an algorithm by de Fraysseix et al.
[9]. This algorithm draws a graph with » vertices on a gnid of size 2n — 4) X (n — 2);
vertices are placed on grid points and edges are crossing-free straight lines, It runs in
time O(n), and is quite easy to implement.

3.1. Why this Algorithm?

This algorithm was chosen from a number of existing algorithms for drawing planar
graphs, all of them with linear running times. The first was developed by Chiba et al.
[5), with an eye towards aesthetics. This possibility was rejected for a number of
reasons. First, it is rather complicated and hard to implement. Second, it requires high
precision calculations, since vertices do not necessarily lie on grid points, while in the
algorithm of [6] we need calculations of integer values on the order of # only. This has
implications to the spread of vertices on the drawing area; when bounded integer
values are used, we have a bound on the minimal distance between two vertices.
Third, the algorithm of [5] does not work well for our purposes. An implementation
of it exists in a software package named GraphEd [13,14]. We tried this system on
several examples, and the results were unsatisfactory. In many cases, vertices were
clustered in a small region of the drawing area, with few vertices spread over distances

238 D. HAREL & M. SARDAS

that were large compared to the clusters. This spreading becomes very problematic in
the randomized phase of our system.

Another algorithm we considered for drawing planar graphs is that of Read [22).
This is a recursive algorithm that draws a graph with n vertices from a drawing of a
subgraph with n — 1 vertices. The algorithm requires the input graph to be maximal
and, based on this assumption, the last vertex can in fact be placed so that no edge
crossings emerge. This algorithm 1s not very complicated, but there are two
advantages to the one we chose over Read’s. First the algorithm of [6] yields a
guaranteed lower bound on the distance between vertices, while Read’s algorithm
might result in the kind of clustering of vertices that occurs in the algorithm of [5].
The second difficulty is with the maximality requirement. Although it is not hard to
first embed a given graph in a maximal graph and then draw it and remove the extra
edges, we explain below why this process should be avoided. And while we have
managed to overcome this requirement for the algorithm of (6] by devising a new
version of it, we did not see a simple way to do so for Read’s algorithm.

Another algorithm for drawing planar graphs was devised by Schnyder [24], and it
also produces the drawing on a grid, with even smaller grid size. In fact, it guarantees
a straight line drawing on a grid of size (n —2) X (n — 2), so that it gives a better
spread of vertices. However this algorithm also depends on the input graph being
maximal, and in a way that doesn’t appear to be easily removable.

Jones et al. [16] compare and test the algorithms of [5, 6, 22, 27], especially in terms
of performance and the spread of their outputs.

3.2. Why a New Version?

The original algorithm of [6] requires the graph to be maximal planar. However, we
want the system to work on planar graphs which are not necessarily maximal. The
simplest way to achieve this is suggested in [9], namely, triangulation. If the graph is
not maximal, dummy edges are added as follows. For every vertex v, if # and w are
two neighbors of v, adjacent in the circular ordering of v’s neighbors but not
connected by an edge, add the dummy edge (», w).

To achieve linear running time for the triangulation, we have to be able to check the
existence of an edge in constant time. This ¢can be done by using an 7 X # adjacency
matrix to represent the graph, and a method suggested in [22] to avoid the quadratic
time that zeroing the matrix at the initialization stage would take.

Thus, the method that emerges is to: (1) tnangulate the graph; (ii) draw the result by
the drawing algorithm; and (ii1) delete the dummy edges introduced in the first step.
The software package GraphEd [13, 14] contains an implementation of this algorithm
too, and we could test its performance there. For example, Figure 1{(a) shows an
example of the output (after deleting the added edges). When this drawing was
submitted as input to the randomized process of phase D, Figure 1(b) was obtained,
which has a major deficiency. Its external face is drawn concave, in a way too twisted
for the randomized phase to overcome. Other examples show similar problems, which
are the result of the idiosyncrasies of the triangulation step, whose dummy edges
often ruin the structure of the graph, yielding unsatisfactory resul:s.

To overcome this difficulty, we have developed a variation of the algorithm of [6],
which does not require a triangulated graph, but works directly on the original input

RANDOMIZED GRAPH DRAWING 239

(a) {b)
Figure 1. The problems of naively applying the drawing algorithm to a non-triangulated graph

graph. Qur algorithm constructs the graph in steps, in such a way that a vertex v
appears in Gy, the graph constructed in step &, only if at least one of its neighbors
appears in Gj_;. This avoids the situation of vertex w in Figure 1, which was drawn
based only on dummy edges that were removed in the final drawing. Figure 2(a)
shows the same graph, drawn using our variant of the algorithm, and F1gure 2(b)
shows the final result. Another example of the results of our algorithm is given in
Figure 8, which contains a planar graph of 49 vertices.
As mentioned, a more detailed description of this algorithm appears in [12].

4, Planar Graphs: Some Enhancements

We have incorporated a number of heuristics and enhancements that improve the
drawing algonthm of phase C. They are:

1. Choosing the initial edge for the algorithm of phase C in such a way that the
external face in the drawing will be the longest face of the graph.

2. Adding dummy edges, so that the graph that is input to phase C becomes
biconnected.

3. ‘Centralizing’ each vertex with respect to its neighbors prior to the randomized
algorithm of phase D.

(@ (b)
Figure 2. The graph from Figure 1 as drawn by our system

240 D. HAREL & M. SARDAS

4. Preventing the randomized algorithm of phase D from introducing new edge
crossings.

We now discuss each of these briefly.

4.1. Pull a Long Face

The embedding list that is input to the drawing algorithm of phase C does not enforce
a choice of the face to be made external. In fact, a graph can be drawn with any of its
faces as external, without affecting the embedding list. Since one of the criteria for
‘nice” drawings is to have short edges, while maintaining uniform distribution of the
vertices, a good heuristic would be to choose a face with a maximal number of vertices
along its boundary. This gives rise to a large drawing space, enclosed by an external
face with relatively short edges.

Given the embedding lists, this heuristic is easy to implement. However, it is worth
mentioning that, in general, embedding lists are not unique®, and different embeddings
can give rise to longest faces of different sizes. A good implementation of the longest
face heuristic would be to examine all possible embeddings and choose the one with
the longest longest face. This can be done with the variant of the PQ-trees embedding
algorithm that produces all possible embeddings, described in [4]. This should be
done with care, however, as there might be an exponential increasing number of
different embeddings for a given graph. An implementation of this idea can be to cut
off the exhaustive search for embeddings once a predefined number of them is
constructed, and then choose the best one among those available. We have not
implemented this version, and leave it for further improvements.

4.2. Use Your Biconnections

Our drawing algorithm in phase C requires the input graph to be biconnected, a fact
that is crucial to the existence part of its correctness proof (see [12]), and we have not
been able to generalize it to deal directly with general graphs. Hence, for
non-biconnected graphs we have incorporated the following preliminary step, that
makes the graph biconnected by adding dummy edges. (These are removed prior to
phase D, of course.)

Let A and B be two biconnected components of a planar graph G, that have a
common vertex ¢ {¥ is thus a cut-vertex, whose removal will disconnect A from B).
We turn A and B into a single biconnected component by chosing two vertices » € A
and w e B, both neighbors of v, and adding a dummy edge between them. It is
important to realize that this cannot destroy planarity. However, the particular pair
chosen does affect the topological embedding of the large compornent. Depending on
the pair of vertices chosen, the operation merges a pair of faces, one from each
component, into a single face.

As before, we would like to choose # and w such that the merged face will be as
long as possible. If this face turns out later to be the external one, then the two
components will be drawn as adjacent portions of the graph, connected at the

“In fact, a planar graph has a unique embedding only if it is triconnected [28].

RANDOMIZED GRAPH DRAWING 241

A SIS
«L

(a) (b}

Figure 3. The unified face of two biconnected components, shown after the removal of the dummy edge,
and drawn as (a) external and (b) interior

cut-vertex, and having a long external face (see Figure 3(a)). Even if the merged face is
not destined to become external, the result is better when this internal face is long,
since one component will be contained in its entirety inside one of the faces of the
other, as in Figure 3(b); having the external face of the inner component larger, as well
as the inner containing face of the outer component, clearly yields a better spreadout
of the vertices.

Tracking the longest face for each vertex as components are merged requires O(r?)
running time.

4.3. Play Center Field

The output of the algorithm of phase C has a typical triangle-like form. The edge
chosen to be initial is drawn as the basis of the triangle, and it 1s the longest edge in
the drawing. In general, lower edges come out longer and higher ones shorter (see
Figure 2(a)). Submitting this output, as is, to the randomized phase is not very wise,
since a large number of iterations are needed to overcome the variance in edge lengths.

We would like to break the typical structure of the output, by moving every vertex
towards the center of gravity of its neighbors, as long as no crossings emerge.

This is achieved by progressing backwards along the straight line from the desired
position to the current position, through a constant number of ‘stations” (7 in our
implementation). The process stops when no crossings are formed. Thus, the vertex is
left at the station closest to the center that still preserves planarity. (Singly-neighbored
vertices are placed at a predefined distance from their neighbor.)

Since the centering algorithm processes the vertices one by one, the overall result
can be far from optimal, After a vertex is centralized, some of its neighbors might be
centralized in subsequent steps of the process, possibly leaving it far from the center
of its neighbors’ final positions. Hence, in terms of optimality, we cannot expect

¢ The idea of placing each node a1 the center of gravity of its neighbors as a criterion for aesthetics in
graph drawing, is the basis of Tutte’s algorithm [27] for drawing triconnected planar graphs. We
incorporate this idea here for non-planar graphs in a totally different way.

242 D. HAREL & M. SARDAS

much from this part of the system. However, in practice it does a pretty good job.
The typical triangular shape of the output from the drawing algorithm is broken, the
drawing has a far smaller variance in edge lengths and is more appropriate as an input
to the randomized phase.

As far as complexity goes, testing a new position for a vertex requires O(ne)
running time to re-evaluate the edge crossings component of the cost function (see
[7]). As this is done # times here, we have a running time of O(n?¢).

4.4. Do Not Cross

The randomized phase D is carried out as described in Section 2, with one exception.
Since only an overall improvement in the value of the cost furnction counts, it is
possible that a new position for a vertex will be accepted despite the fact that edge
crossings emerge. This will happen if other components of the cost function, i.e. edge
lengths and the distribution of vertices, are greatly improved, but only a small number
of crossings emerge. We believe that a planar graph should be drawn planar even at
the cost of some distortions. Therefore, in the case of planar graphs, we have
implemented an explicit rejection of moves that result in edge crossings. Thus, the
graph is kept planar throughout the randomized phase, even when this entails
rejecting moves that improve the overall score.

5. Non-Planar Graphs

Our first attempt at drawing non-planar graphs was to submit the planar subgraph
found by the algorithm of phase B~, together with the embedding found in phase B,
to the drawing algorithm of phase C, and then to reinsert the edges removed, letting
the randomized phase take care of beautification. This naive approach proved to be
problematic. Reinserting even a small number of edges into the planar drawing created
by the drawing algonthm produced situations that were very hard for the randomized
phase to deal with. The number of crossings was often large, and the edges reinserted
were long. The performance of the randomized phase was poor, sometimes even
worse than its performance on random initial layouts of the graph. The reason is, of
course, that although the planar subgraph phase attempts to minimize the number of
edges removed and then reinserted, it does not do well in minimizing the number of
crossings or edge lengths, which are the kinds of difficultics that can be very hard to
deal with for an algorithm that moves one vertex at a time.

5.1. Add Dummies Smartly

To solve the aforementioned problem, we have developed a more elaborate algorithm,
that reinserts the edges before executing the drawing algorithm, rather than after it;
this is phase B*. When remserting an edge, we keep the graph planar by creatng
dummy vertices in places where crossings occur. However, we would like to reinsert
an edge while introducing as few dummy vertices as possible. This is done using a
‘shortest path of faces’ heuristic, as follows:

Assume we have a planar subgraph G, of the orginal input graph G, along with a
planar embedding thereof. Let ¢ € G — G, be one of the extracted edges, ¢ =(x, v).
To insert e into G, causing as few new crossing points as possible, we carry our a

RANDOMIZED GRAPH DRAWING 243

&
h
&3

Figure 4. Adding a quasi-edge using the shortest face-path heuristic

breadth-first shortest path search in the dual graph of G,, i.c. the graph of its faces.
(Two faces are neighbors if they have a common edge in G,.) The search starts with
all faces whose boundary contains the vertex #, and terminates at the first face whose
boundary contains the vertex v.

After the shortest path is found, the edge e is inserted into G, as a sequence of edges
that traverses this path of faces, by introducing dummy vertices where crosses occur.
We call such a sequence a guasi-edge (see Figure 4). This process is performed
repeatedly, reinserting the extracted edges one by one, enriching (but maintaining the
planarity of) the graph G, at each step.

The final graph, call it G, is a quasi-plananization of the onginal input graph G, in
the following sense. Its vertices contain the vertices of G with some additional
dummy vertices, all of which occur along quasi-edges. The edges of G are mapped
into edges or quasi-edges in G'¢,

5.2. Straighten Things Out

The (planar) graph that results {rom the shortest face-path heuristic is then submitted
to the drawing algorithm of phase C. A dummy vertex is not shown as a vertex but as
a pair of bends, one on the quasi-edge and one on the edge it crosses. However, since
our goal is to produce a straight-line graph, we would like the randomized algorithm
in phase D to try reduce the number of the bends without increasing the number of
crossings by too much. For this purpose we have enriched the randomized phase in
the following two ways:

First, if we can straighten such a pair of bends without causing any damage, 1.e.
without increasing the number of crossings (except for the single crossing that is
presumably needed to replace the pair of bends itself), we do it. Testing for this is
carried out in two stages, one for each of the two bent edges involved, as illustrated

¢ As in the longest face heuristic of Section 4.1, a berter implementation of this process would be to check
all possible embeddings of the planar subgraph G, choosing the one that minimizes the number of dummy
vertices. We have not implemented this.

244 I HAREL & M. SARDAS

- - [S

(a) (b) {©

Figure 5. Straightening bends in two stages: (a) the dummy vertex, (b} after the first stage, () after the
second stage

in Figure 5. If both bends pass the test process, the dummy vertex that caused the
bends is eliminated, and the edges are straightened, as in Figure 5(c). This replacement
and elimination procedure is executed several times during the randomized phase.

Figure 6(a) shows a graph after the shortest face-path heuristic, in which three
dummy vertices appear. Its final form is given in Flgure 6(b), in which all three
dummy vertices were eliminated, resulting in three crossmgs in the drawing.

The second modification to thc randomized phase is a new component added to the
cost function. It embodies a heunstic, to the effect that the chance of eliminating
bends increases as the angles involved come closer to being straight. For each dummy
vertex v in the graph and each of the two quasi-edges that pass through it, if the
quasi-edge bends at v with angle «, the following term is added to the cost function:

(recos ()

This term yields small values for a close to 7, and larger values for sharper angles, as
needed.

5.3, Cross if Convenient

Recall the strategy we adopted in the randomized phase of the planar case, whereby
moves that introduce edge crossings are rejected, even if they improve the overall
value of the cost function. In the non-planar case, this strategy leads to poor

(a) ()

Figure 6. A graph drawn using the shortest face-path heuristic

RANDOMIZED GRAPH DRAWING 245

Figure 7. Final result on a planar graph of 49 vertices and 112 edges

performance as far as the straight-angles heuristic is concerned, in that it tends to leave
more dummy vertices intact, These vertices were usually eliminated completely when
subjected to moves that improve the overall cost function, even at the expense of
introducing new crossings. Moreover, the humber of crossings were not increased
dramatically. Hence, for non-planar graphs, we have decided not to reject moves that
increase the number of crossings.

6. Examples

Many examples are provided in [7]. They demonstrate the power of the simulated
annealing approach for graphs of modest size or simple structure, such as the
3-dimensional cube (eight vertices), the dodecahedron (20 vertices), the 6-by-6 gnd,
and various trees. For such graphs, the preliminary phases of our system do not
provide much added value. Hence, in this sechon we concentrate on cases where a
significant improvement over the bare randomized phase 1s achieved.

6.1. Planar Graphs

Planar graphs of any size are drawn planar by our system, while the annealing system
of [7] has difficulty achieving planar drawings for some graphs of even moderate size.
Figure 7 shows the output of our system on a planar graph of 49 vertices and 112
edges. Figure 8 shows the intermediate result, as output from phase C and prior to

Figure 8. Intermediate result of Figure 7 after the drawing algorithm

246 D. HAREL & M, SARDAS

Figure 9. The graph of Figure 7 as produced by the simulated annealing system of [7]

phase D. This demonstrates the power of the randomized algorithm of [7] in taking an
‘ugly’, but planar, version of the graph and drawing it nicely. In contrast, when
applied to a random layout, without the heavy-duty preprocessing of phases B and C,
the system of [7] does quite poorly, as can be seen in Figure 9. Although some of the
graphs inherent structure can be seen, the drawing is far from optimal; it seems to
need some sort of turning things ‘inside out’.

Repeated runs of the annealing system on this graph, starting from other initial
random drawings, produced other results, none of them planar and many even worse
than the one shown here. This also illustrates the difference in stability between our
system and that of [7]. When applied repeatedly to a difficult example, the latter
system yields results with large variance, which is true even when it is always run on
the same imtial random drawing. In our system, on the other hand, repeated runs on
the same graph yield very similar (albeit not always identical) results; this is due to the
planarizing phases, and the fact that the randomized phase tends not to destroy the
graph’s overall topology (i.e. the graph’s embedding).

Figure 10 contains another example of a planar graph, this time a sparse graph with
50 vertices and 75 edges. Again, the annealing system was not able to produce a planar
drawing.

(@) (b)

Figure 10, A sparse planar graph: (a) our system’s output, (b) that of the annealing system of [7]

RANDOMIZED GRAPH DRAWING 247

(a) G
Figure 11. A 10-by-10 grid (a) after planarization, (b) the system’s final result

As a third example of a planar graph, consider the 100 vertex, 180 edge, 10-by-10
grid. Figure 11(b) shows the somewhat distorted output that the system provides. The
distortion originates in the planar drawing phase, whose output is shown in Figure
11(a). The randomized phase does a lot of good, and the essential structure of this
graph is clear, yet it is unable to completely overcome the distortion.

6.2. Non-Planar Graphs

Our approach to non-planr graphs is clearly biased towards graphs with only a small
‘amount’ of non-planarity, and its success is thus a function of this. The crucial
parameter seems to be the number of dummy vertices that are added to the graph, as a
result of the maximal planar subgraph algorithm of phase B~ and the minimal
face-path heuristic of phase B*,

Figures 12 and 13 illustrate a successful case of a graph with 37 vertices and 76
edges. The planar subgraph algorithm removed nine edges; reinserting them using the
face-path heuristic produced 13 dummy vertices, seen as bends on the edges in Figure
13. The final result, with only eight crossings, appears in Figure 12.

Figure 12. Final result on a non-planar graph of 37 vertices and 76 edges

248 . HAREL & M. SARDAS

Figure 13. Intermediate result of Figure 12 after the drawing algorithm

However, managing to add only a small number of dummy vertices is not always
enough. Figure 14 contains a graph with 37 vertices and 68 edges, similar to that of
Figure 12. Part (a) shows a manual drawing of the graph, in which eight crossings
occur, and part (b) shows our system’s final output. The intemediate result, after
phase C, yielded 11 dummy vertices by reinserting eight edges, values that are smaller
than their counterparts in the previous example. Yet the final result (Figure 14(b)),
although having only eight crossings, just as that of Figure 14(a), is only partially
successful. The problem is due to the embedding produced in phase B, which is
reflected in the topology of the final result and upon which the randomized phase was
not able to improve. It seems hard to predict such a situation in the planar embedding
phase so this kind of phenomenon will probably have to be tolerated.

It is noteworthy that in both examples the number of dummy vertices produced by
phase B™ of our system is larger than the minimum possible (eight in both cases).
Fortunately, the randomized phase is powerful enough to overcome redundant
dummy vertices in many cases, by repeatedly effectmg small changes in the drawing’s
topology. However, if the number of dummy vertices is significantly larger than the
minimum needed, results will ot be as good.

(@ (b)

Figure 14. A less Jucky example of a non-planar graph: (a) a hand drawn version, (b) our system’s output

RANDOMIZED GRAPH DRAWING 249

7. Complexity and Performance

We first summarize the asymptotic time-complexity of our system, for an input graph
G =(V, E), with n = |V|, e =|E|. We refer to parts of the known algorithms that we
use, although their details were not always discussed here, as well as to parts of our
own algorithms, some of which are described more fully in [12].

For planar graphs, the system’s phases and their running times are as follows:

Phase A:
1. Finding biconnected components—O(n).
2, Calculating an sz-numbering—O(z).
3. Testing planarity using PQ-trees—O(n).
Phase B:
1. Planar embedding of each biconnected component—O(»).
2. Building faces data structure using a right hand walk—O(n?).
3, Merging biconnected components to form a biconnected graph—O(n?).
Phase C:
1. Planar drawing algorithm—O(n).
Phase D:
1. Centering vertices—O(n%e).
2. Randomized beautification—O(n%¢).

Since for planar graphs e = O(n), the overall complexity in this case is O(n’).
For non-planar graphs, the phases and their running times are as follows":

Phase A:

1. Finding biconnected components—O(n + e).

2. Calculating an st-numbering—O(n +).

3. Testing planarty using PQ-trees—O(n).
Phase 87

1. Extracting planar subgraph using PQ-trees—O(n?).

2. Making the planar subgraph maximal—O(n").
Phase B:

1. Planar embedding of each biconnected component—O(n).

2. Building faces data structure using a right hand walk—O(n?).

3. Merging biconnected components to form a biconnected graph—O(n?).
Phase B*:

1. Reinserting extracted edges using the face-path heuristic—O(e?).
Phase C:

1. Planar drawing algorithm-—O(e?).
Phase D:

1. Centering vertices—O(e*).

2. Randomized beautification—O(e*).

This gives a total upper bound of O{e*) for non-planr graphs.
As can be seen, for both kinds of graphs the highest asymptotic complexity is

{The graph G' = (V’, E") obtained by phase B™ is of size n’ = O(e®) and €' = O(e®). Hence, the bounds
in phases € and 2, which are both applied to this graph.

250 D. HAREL & M. SARDAS

Table 1. Performance on a Sun Sparc-2.

Figure Vertices Edges Planar Preprocessing Randomized Total
7 49 12 yes 0-2 79-0 79-2

10 50 75 yes 0-2 44-1 443

11 100 180 yes c-4 ' 139-0 139-4

12 37 76 no 12 31 4Q-3

14 37 68 no 07 341 34-8

64 123 no 13 683 69-6

{random) 60 80 no 06 37-3 379
(random) 60 120 no 39 102-5 106-4

incurred by the randomized annealing-like phase. In actual tests this phase was indeed
the most costly, as Table 1 shows, It gives the running time (in seconds) of our system
on a Sun Sparc-2 for the examples discussed in Section 6, and for some other
examples, not shown in the paper. The ‘preprocessing’ column gives the running time
used by phases A~C of the algorithm. The ‘randomized’ column gives the running
time of phase D, including the vertex centering step. Interestingly, the heavy-duty
preprocessing that our system carries out requires only a very small fraction of the
entire running time (up to 3%).

8. Future Work

Clearly, much remains to be done. Some topics that pertain to harder problems (e.g.
richer graphical objects, such as curved-line graphs, hypergraphs [2] or higraphs [11])
were alluded to in [7]. Some work on hypergraphs has already been done (see [1]).
However, even in the more humble realm of straight-line graphs, the present paper,
although improving on [7], leaves a lot to be desired. The main reason is that it is
heavily orientated towards planar or close-to-planar graphs. Here are some specific
directions where more work could probably be done.

8.1. Symmetry

The examples we have presented might give the impression that symmetry comes for
free, since, although it does not look for symmetry explicitly, our system often
produces drawings that are highly symmetrical. However, this is not always so, as has
often been pointed out in the literature. For example, consider the graph of Figure
15(a), which was drawn by hand. It has 20 vertices and 34 edges, and in this drawing
we have five edges, mutually inter-crossed, giving a total of 10 crossings. Running our
system on it produces the far worse Figure 15(b), in which there are only five
crossings and one bent edge.

This graph is a hard example for the simulated annealing system of [7] too, as well
as for other algorithms based on physical forces, such as spring-based methods (see
(1. The same is true even when the weight attributed to crossings in the cost
function is reduced to zero. Symmetry in such cases should be sought for explicitly,
since it is hard to obtain as a by-product of other criteria for nice drawing.

RANDOMIZED GRAPH DRAWING 251

(a} (b
Figure 15. Symmetry vs. planarity

As symmetry detection was recently shown to be NP-complete [21], improvements
based on randomization of heuristics should definitely be sought.

8.2. Better Planarization

It seems that one could develop better heuristics for planarizing non-planar graphs
using a smaller number of dummy vertices (which will result in a smaller number of
crossings in the final drawing). Poor performance in any of several parts of our system
can be responsible for a larger-than-needed number of dummy vertices:

o The search for a maximal planar subgraph in phase B~ mught cause the
elimination of a larger number of edges than is really needed.

* The construction of a planar embedding in phase B, which ignores the edges to
be reinserted, might produce an embedding that is problematic for the minimal
face-path algonthm of phase B*. There could exist other embeddings, in which
reinserting the same set of edges produces a smaller number of crossings.

* Given an embedding and a set of edges to reinsert, the face-path algorithm might
still introduce a larger number of dummy vertices than is needed, since it works
sequentially, edge by edge. Reinserting the edges in a different order, or
reinserting an edge via a different path of faces might decrease the overall number
of dummy vertices.

These difficulties can be partly eased by incorporating randomization at points
where choices are made. The user (or perhaps the system) can then carry ourt several
runs, choosing the best. For example, there are cases where the face-path algorithm
constructs two or more paths of the same length on the dual graph. The current
implementation picks the first path found, while it could have made random choices
among the set of possible paths. Similarly, the initial order in which the edges are
reinserted could be determined randomly. Points of arbitrary choice exist in many
places in the maximal planar subgraph algorithm and in the embedding algorithm, and
a similar treatment can be implemented there too.

Sometimes a point of choice can be dealt with more intelligently, by taking the
specific circumstances into account. For example, it might be possible to develop a
new planar embedding algorithm, which at points of arbitrary choice will inspect the
list of edges to be later reinserted and will choose its way accordingly.

252 D. HAREL & M. SARDAS

8.3. Automatic Tuning

As in the original system of [7], our randomized phase has various parameters, all of
which have predefined values in the current implementation. Some can be adjusted by
the user before running on a new graph. One of these is the very number of rounds
carried out by the randomized phase. In many cases, a stable and satisfactory result is
reached early in the run, and much of the costly running time of the randomized
phase could be eliminated if the system were able to detect these cases and terminate
without wasting time on rounds that contribute nothing, This was observed in [7].

The relative weights of the different components in the cost function can also be
changed by the user prior to a new run. It would be nice to incorporate intelligent
heuristics that would enable the system to change these in accordance with the input
graph, or even during the run itself. We have made a humble step in this direction,
concerning a problem we ran into with the size of the drawing. Large graphs tended
to spread widely, and vertices were ‘pressed’ against the borderline of the drawing
space due to the relative weight of the vertex—distribution component. The solution
we implemented was to let the weight of the edge attraction component be dependent
(in a linear fashion) on the size of the graph. Thus, for large graphs we have strong
- attraction forces along edges, obtaining a balance with respect to the repelling forces
between vertices. This yields reasonable results, and large graphs are now drawn
better.

One can think of other parameters to be adjusted automatically. For example, if the
variance of edge lengths grows too large during the run, it might be beneficial to
increase the weight of this component for a few rounds. We have not implemented
thas.

Acknowledgements

We wish to thank Goos Kant from The University of Utrecht and Matthias Stallmann
from North Carolina State University for their implementations of the planar
subgraph algorithm and the planar embedding algorithm, respectively. Both programs
were integrated into our system with permission of their authors and saved a large
amount of work. We would like to thank the two referees for their thorough reading
and helpful comments, and for pointing out a number of additional references. This
work was partially supported by grants AF #F49620-94-1-0198 (to F. Schneider)
NSF #CCR-9223183 (to B. Bloom), NSF #CDA-9024600 (to K. Birman) and ARO
#DAALQ3-91-C-0027 (10 A. Nerode).

References

1. G. Di Bartista, P. Eades, R. Tamassia & 1. G. Tollis (1993) Algorithms for Automatic
Graph Drawing: An Annotated Bibliography. Technical Report, Dept. of Computer
Science, Brown University, Providence, USA.

2. C. Berge, (1973) Graphs and Hypergraphs. North-Holland, Amsterdam.

3. K. S. Booth & G. §. Lueker (1976) Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-tree Algorithms, Jowrnal of Computer Systems
Science 13, 335-379.

RANDOMIZED GRAPH DRAWING 253

4,

3.

6.

10.

11.

12,
13,

14,

15,

16.

17,

18.

19,

20,

21,

22,

23.

24,

25.

26,

27.

28.

N. Chiba, T. Nishizeki, 5. Abe & T. Ozawa (1985) A Linear Algorithm for Embedding
Planar Graphs Using PQ-trees. Journal of Computer Systems Science 33, 54-76.

N. Chiba, K. Onoguchi & T. Nishizeki (1985} Drawing Plane Graphs Nicely, Acta
Informatica 22, 187-201.

M. Chrobak & T. H. Payne (1990) A Linear Time Algorithm for Drawing a Planar Graph
on a Grid. Technical Report UCR-C$5-90-2, Dept. of Mathematics and Computer
Science, University of California, Riverside, CA, USA.

. R. Davidsen & D. Harel {in press) Drawing Graphs Nicely Using Simulated Annealing.

Communications of the Association for Computing Machinery.

. P. Eades (1984) A Heuristic for Graph Drawing. Congressus Nemerantium 42, 149-160.
. H. de Fraysseix, J. Pach, & R. Pollack (1988) Small Sets Supporting Firy Embeddings of

Planar Graphs. In: Proceedings of the 20th ACM Symposium on Theory of Computers.
ACM Press, New York, pp. 426-433.

T. Fruchterman & E. Reingold (1991) Graph Drawing by Force-Directed Placement.
Software—Practice and Experience 21, 1129-1164.

D. Harel (1988) On Visual Formalisms. Communications of the Assocation for Computing
Machinery 31, 514-530.

D. Harel & M. Sardas (submitted) An Incremental Drawing Algorithm for Planar Ghraphs.
M. Himsolt (1989) GraphEd: An Interactive Graph Editor. In: Proceedings of STACS 89,
Lecture notes in Computer Science 349, pp. 532-533, Springer-Verlag.

M. Himsolt (1993) A View to Graph Drawing Algorithms through GraphEd. In:
Proceedings of Alcom Workshop on Graph Drawing, pp. 117-118.

R. Jayakumar, K. Thulasiraman & M. N. S. Swamy (1989) O(n®) Algorithm for Graph
Planarization. IEEE Transactions on Computer-Aided Design 8, 257-267.

S. Jones, A. Moran, N. Ward, G. Delott & R. Tamassia (1991) A Note on Planar Graph
Drawing Algorithms. Technical report 216, Dept. of Computer Science, University of
Queensland, Australia,

T. Kamada & S. Kawai (1989) An Algorithm for Drawing General Undirected Graphs,
Information Processing Letters 31, 7-15.

G. Kant (1992) An O(n®) Maximal Planarization Algorithm Based on PQ-trees. Technical
Report RUU-CS-92-03, Dept. of Computer Science, Utrecht University, The
Netherlands.

P. J. M. van Lazrhoven & E. H. L. Aarts {1987) Simulated Annealing: Theory and
Applications. D. Reidel Publishing Co., Dortrecht.

A. Lempel, 5. Even & 1. Cederbaum (1967) An Algorithm for Planarity Testing of Graphs.
In: Theory of Graphs: International Symposium (P. Rosenstiehl, ed.) New York, Gordon
and Breach, pp. 215-232.

J. Manning {1991) Computational Complexity of Geometric Symmetry Detection in
Graphs. Lecture Notes in Computer Science 507, Springer-Verlag. pp. 1-7.

R. C. Read (1987) A New Method for Drawing a Planar Graph Given the Order of Edges
at Each Vertex, Congressus Nemerantium 56, 31-44.

M. Sardas (1993) Drawing Graphs Nicely on the Plane. M.Sc. Thesis, Department of
Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovor,
Israel.

W. Schnyder {(1990) Embedding Planar Graphs on the Grid. In: Proceedings of the Ist
Annual ACM-SIAM Symposium on Discrete Algorithms. ACM Press, New York. pp.
138-148,

R. Tamassia, G. Di Battista & C. Batini (1988) Automatic Graph Drawing and Readability
of Diagrams. IEEE Transactions on Systems, Man and Cybernetics 18, 61-79.

D. Tunkelang (1992) An Aesthetic Layout Algorithm for Undirected Graphs. Master
Thesis, M.I.T., MA, U.S.A.

W. T. Tutte {1963) How to Draw a Graph. Proceedings of the London Mathematical
Society, series 3, no. 13, 743-768.

H. Whitney (1932) Non-separable and Planar Graphs. Transactions of the American
Mathematical Society 34, 339-362,

